Journal of

The Chemical Society,

Chemical Communications

Cycloaddition of Alkynes to the Complexed cis-Azo Group. Formation and Crystal Structure of the Diphenylacetylene Adduct of $\mu-1,2-[3,3-\operatorname{Bis}(m e t h o x y c a r b o n y l)-$ 4-phenyl-1-pyrazoline]-hexacarbonyldi-iron

By C. Krüger and H. Kisch* \dagger
(Max-Planck-Institut für Kohlenforschung, Lembkestr. 5, and †Institut für Strahlenchemie im Max-Planck-Institut für Kohlenforschung, Stiftstr. 34-36, 4330 Mulheim/Ruhr, Germany)

Summary The reaction of diphenylacetylene with $\mu-1,2-$ [3,3-bis(methoxycarbonyl)-4-phenyl-1-pyrazoline]-hexa-carbonyldi-iron gives tetraphenylcyclobutadiene tricarbonyliron; possible intermediates have been isolated, and the structure of the initial cycloadduct has been determined by X-ray analysis.

Cyclic azo alkanes having a cis-azo link are known to react with iron carbonyls with the formation of mono, ${ }^{1-}$ bi- 2 and trinuclear ${ }^{3}$ complexes in which the azo group serves as a two-, four- or six-electron donor. In an investigation of the reactivity of the complexed $\mathrm{N}=\mathrm{N}$ double bond we have studied the reaction of diphenylacetylene with μ-1,2-[3,3-bis(methoxycarbonyl)-4-phenyl-1-pyrazoline]-hexacarbonyldi-iron (1).

In the reaction of diphenylacetylene with (1) at 150° tetraphenylcyclobutadiene tricarbonyl iron (2) was formed besides small amounts of hexaphenylbenzene and known complexes of the alkyne. ${ }^{4}$ In a search for possible intermediates the reaction was studied under milder conditions. Irradiation ($\lambda \geqslant 290 \mathrm{~nm}$) of a toluene solution of (1) in the presence of an excess of diphenylacetylene, followed by
chromatography (silica gel, -20°) gave black crystals of a complex (3) analysing as $\mathrm{LFe}_{2}(\mathrm{CO})_{6} \mathrm{PhC}_{2} \mathrm{Ph}[\mathrm{L}=3,3$-bis-(methoxycarbonyl)-4-phenyl-1-pyrazoline], pink crystals of

composition $\mathrm{LFe}(\mathrm{CO})_{4} \mathrm{PhC}_{2} \mathrm{Ph}$ (4), and deep red crystals of composition $\mathrm{LFe}(\mathrm{CO})_{3}\left(\mathrm{PhC}_{2} \mathrm{Ph}\right)_{2}(5)$ as well as small amounts of (2). Complex (3), m.p. 132-134 ${ }^{\circ}$ decomp., is stable at room temperature only in the solid state and decomposes in solution into (4) and iron carbonyl fragments; (4) reacts with diphenylacetylene to give (5) which can be converted into the cyclobutadiene complex (2) by heating in vacuo to
150°. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum of (3) at $-70^{\circ}\left(\left[{ }^{2} \mathrm{H}_{3}\right]\right.$-toluene $)$ shows the ring protons of the pyrazoline at about the same chemical shift as in the starting compound (1) and the phenyl protons of the complexed $\mathrm{PhC}_{2} \mathrm{Ph}$ at $\tau \mathbf{3 . 1 - 3 . 4}$.

The structure of complex (3) was determined by single crystal X-ray crystallography. Crystal data: $\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{Fe}_{2} \mathrm{~N}_{2}$ $\mathrm{O}_{10}, M=720.27$, monoclinic, $a=23 \cdot 406(3), b=8.551(1)$, $c=16 \cdot 157(2) \AA, \quad \beta=98 \cdot 73(1)^{\circ}, \quad V=3196.3 \AA^{3}, \quad Z=4$, $D_{\mathrm{c}}=1.497 \mathrm{~g} \mathrm{~cm}^{-8}$, space group $P 2_{1} / c ; \mathrm{Mo}-K_{\alpha}$ radiation. 4212 reflections (2104 unobserved) were collected on a Nonius CAD-4 automatic diffractometer. After 10 cycles of block diagonal refinement, the R-value settled at $R=$ $0 \cdot 053$, $R w=0 \cdot 063$.

The molecule is shown in the Figure; it contains two $\mathrm{Fe}(\mathrm{CO})_{3}$ groups connected by an $\mathrm{Fe}-\mathrm{Fe}$ bond of typical length for a doubly bridged $\mathrm{Fe}-\mathrm{Fe}$ system. ${ }^{5}$ A nitrogen atom of the azo group and a carbon atom of the inserted acetylene molecule complete the nonplanar four-membered ring. The dihedral angle between the planes $\mathrm{Fe}(1)-\mathrm{X}-\mathrm{Fe}(2)$ $[\mathrm{X}=\mathrm{N}(2), \mathrm{C}(8)]$ is $100 \cdot 3^{\circ}$. The distance $\mathrm{Fe}(2)-\mathrm{C}(7)$ indicates a weaker interaction compared with $\mathrm{Fe}(2)-\mathrm{C}(8)$. The $\mathrm{C}-\mathrm{C}$ bond length of the inserted acetylenic group is increased characteristically upon co-ordination. This effect
is paralleled by a bending of the phenyl groups towards $s p^{2}$-angles at atoms $C(7)$ and $C(8)$. Due to the asymmetric bonding situation, two different angles are found; whereas the $\mathrm{Ph}-\mathrm{C}-\mathrm{C}$ angle at the bridging carbon atom is found to be $120 \cdot 4(7)^{\circ}$, at the nonbridging carbon atom it is $127 \cdot 4(8)^{\circ}$. The $\mathrm{Fe}(1)-\mathrm{C}(7)-\mathrm{C}(8)$ fragment bears similarities to other ferra- π-allylic systems. ${ }^{\circ}$ The second nitrogen $\mathrm{N}(1)$ does not bond to the iron atoms.

In the pyrazoline part the $\mathrm{N}-\mathrm{N}$ distance indicates that the bond is single, ${ }^{7}$ being much longer than the double bond values observed in the free ligand, $1 \cdot 24 \AA^{8}$ and in a pyrazoline- $\mathrm{Fe}(\mathrm{CO})_{4}$ complex in which one lone pair of the azo group donates to the Fe atom, 1-242 \AA.' In complexes analogous to ($\mathbf{1}$) this bond is found to be $1 \cdot 39-1.404 \AA .^{10}$ Apart from the $\mathrm{C}-\mathrm{N}-\mathrm{N}-\mathrm{C}$ fragment, the geometry of the pyrazoline remains unaltered. ${ }^{2}$ Some changes in the ring bond angles occur which relieve strain in the five-membered heterocycle. Probably the compounds obtained previously in the reaction of μ-1,2-(3,6-diphenylpyridazine)-hexacarbonyldi-iron with dialkyl acetylenedicarboxylates are similar in structure. ${ }^{11}$
(Received, 1st November 1974; Com. 1338.)
${ }^{1}$ H. Kisch, J. Organometallic Chem., 1972, 38, C19.
${ }^{2}$ R. P. Bennett, Inorg. Chem., 1970, 9, 2185; M. Herberhold and W. Golla, J. Organometallic Chem., 1971, 26, C 27.
${ }^{3}$ A. Albini and H. Kisch, Angew. Chem., 1974, in the press.
${ }^{4}$ H. Kisch, Proceedings of the XVIth International Conference on Coordination Chemistry, Dublin, August 1974, Abstract 3.21.
${ }^{5}$ J. A. Bertrand, J. L. Breece, A. R. Kalyanaraman, G. J. Long, and W. A. Baker, Jr., J. Amer. Chem. Soc., 1970, 92, 5233 ;
J. F. Blount, L. F. Dahi, C. Hoogzand, and W. Huebel, ibid., 1966, 88, 292; P. E. Baikie and O. S. Mills, Chem. Comm., 1966, 707;
P. R. Dodge and V. Schomaker, J. Organometallic Chem., 1965, 3, 274.
${ }^{6}$ C. Krüger, Y.-H. Tsay, F. W. Grevels, and E. Koerner von Gustorf, Israel J. Chem., 1972, 10, 201.
${ }^{7}$ H. Luth and J. Trotter, Acta Cryst., 1965, 19, 614.
${ }^{5}$ M. P. Rousseaux, J. Meunier-Piret, J.-P. Putzeys, G. Germain, and M. van Meerssche, Acta Cryst., 1972, B28, 1720.
${ }^{\circ}$ C. Krüger, Chem. Ber., 1973, 106, 3230.
${ }^{10}$ R. G. Little and R. J. Doedens, Inorg. Chem., 1972, 11, 1392.
${ }^{11}$ H. A. Patel, A. J. Carty, M. Mathew, and G. J. Palenik, J.C.S. Chem. Comm., 1972, 810.

